计算特征向量间欧式距离的快捷方法

最近因为课题需要,使用欧式距离来计算多个特征向量间的距离。开始的想法是使用循环来解决,发现计算复杂度高,时间长

在博客中看到作者GoHowz 和其引用frankzd博客,通过矩阵的方法来代替之前循环计算方法,速度提升很多!!!

作者原文:https://blog.csdn.net/IT_forlearn/article/details/100022244


为了方便后面查询,粘贴了GoHowz 博客中的计算方法如下:

def euclidean_dist(x, y):
        """
        Args:
          x: pytorch Variable, with shape [m, d]
          y: pytorch Variable, with shape [n, d]
        Returns:
          dist: pytorch Variable, with shape [m, n]
        """
 
        m, n = x.size(0), y.size(0)
        # xx经过pow()方法对每单个数据进行二次方操作后,在axis=1 方向(横向,就是第一列向最后一列的方向)加和&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值